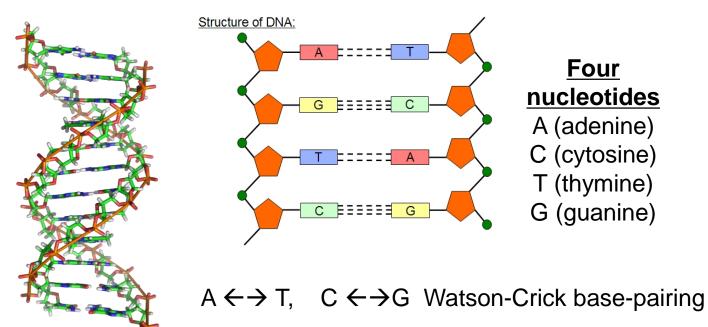

CS 342: Bioinformatics Lecture 1

Catie Welsh

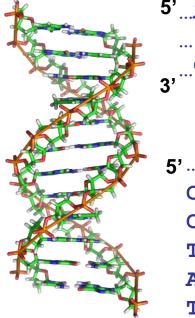
Bioinformatics is Interdisciplinary!

Biology 101


Actually...just the cliff notes Actually...we'll just focus on one branch of biology...

Molecular biology is a branch of science concerning **biological** activity at the **molecular** level.

- DNA
- RNA
- Protein

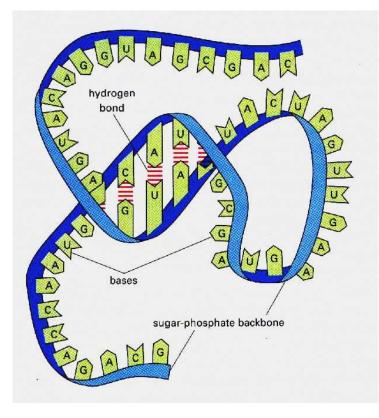

DNA

Each strand composed of sequence of covalently bonded **nucleotides** (bases).

DNA

Each strand composed of sequence of covalently bonded **nucleotides** (bases).

5'...ACGTGACTGAGGACCGTG...^{3'} ...|||||||||||||||... ...TGCACTGACTCCTGGCAC... 3'

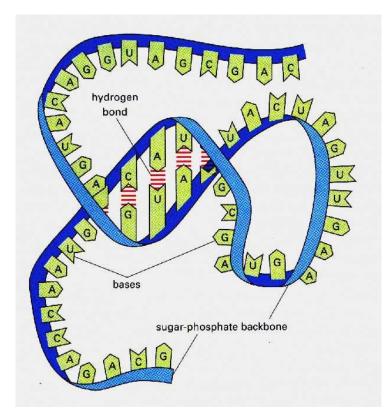

Pair of strings from 4 character alphabet

```
Read: 5' \longrightarrow 3'
```

5' ...ACGTGACTGAGGACCGTG CGACTGAGACTGACTGGGT CTAGCTAGACTACGTTTTA TATATATATACGTCGTCGT ACTGATGACTAGATTACAG TGATTTTAAAAAAATATT... 3'

Single **string** from 4 character alphabet

RNA

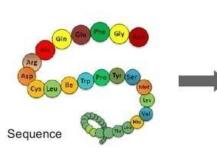


• Single-stranded

- A (adenine)
- C (cytosine)
- U (uracil)
- G (guanine)
- Can fold into structures due to base complementarity.
 A ← → U, C ← → G
- Comes in many flavors:

mRNA, rRNA, tRNA, tmRNA, snRNA, snoRNA, scaRNA, aRNA, asRNA, piwiRNA, etc.

RNA

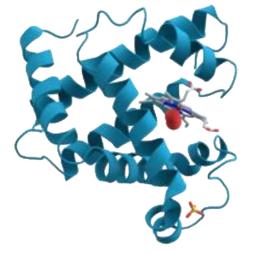

...ACGUGACUGAGGACCGUG...

A single string from 4 character alphabet

Protein

Amino Acid	3-Letters	1-Letter
Alanine	Ala	А
Arginine	Arg	R
Asparagine	Asn	Ν
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	E
Glutamine	Gln	Q G
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	Ι
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	М
Phenylalanine	Phe	F
Proline	Pro	Р
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

- A large molecule consisting of a long chain of amino acids.
- Folds into 3D structures to perform various functions in cells

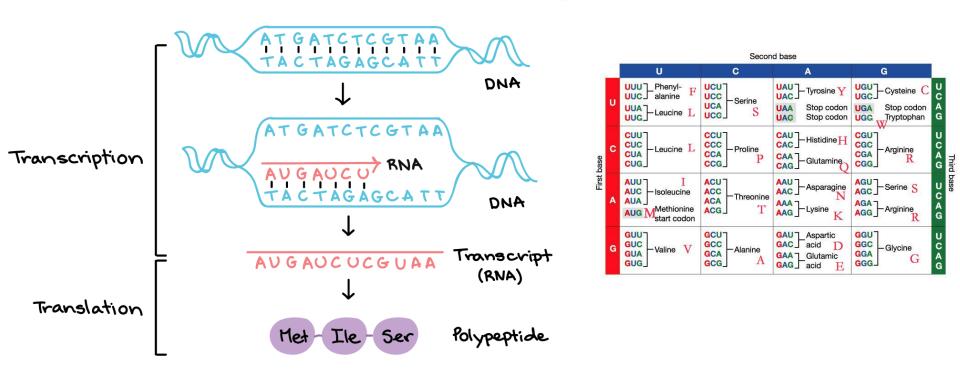


Protein

A single string from a 20 character alphabet

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	Ν
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	E
Glutamine	Gln	Q G
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	Ι
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	М
Phenylalanine	Phe	F
Proline	Pro	Р
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

... DTIGDWNSPSFFGIQLV SSVHTTLWYRENAFPVLGG FSWLSWFNWHNMGYYYPVY HIGYPMIRCGTHLVPMQFA FQSIARSFALVHWNAPMVL KINPHERQDPVFWPCLYYS VDIRSMHIGYPMIRCYQA...


Molecule	Representation	
DNA	String from a 4 character alphabet ({A,C,G,T})	
RNA	String from a 4 character alphabet ({A,C,G,U})	
String from a 20 character alphabet Protein ({A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V})		

Molecule	Representation	Function
DNA	String from a 4 character alphabet ({A,C,G,T})	Information storage
RNA	String from a 4 character alphabet ({A,C,G,U})	Old: Messenger, New: Many
Protein	String from a 20 character alphabet ({A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V})	Perform cellular functions (biochemistry, signaling, etc.)

Central Dogma: DNA makes RNA makes Protein

The process by which cells "read" the genome

DNA → RNA → Protein (The Central Dogma)

https://www.khanacademy.org/science/biology/gene-expression-centraldogma/transcription-of-dna-into-rna/a/overview-of-transcription

Molecule	Representation	Function
DNA	String from a 4 character alphabet ({A,C,G,T})	Information storage
RNA	String from a 4 character alphabet ({A,C,G,U})	Old: Messenger, New: Many
Protein	String from a 20 character alphabet ({A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V})	Perform cellular functions (biochemistry, signaling, etc.)

This class will focus on <u>Algorithms</u> on strings, trees, and graphs designed for analyzing DNA, RNA and Proteins

Activity

Come up with an "algorithmic" problem (specify input and output) that deals with strings. Be as specific as possible. Be creative!

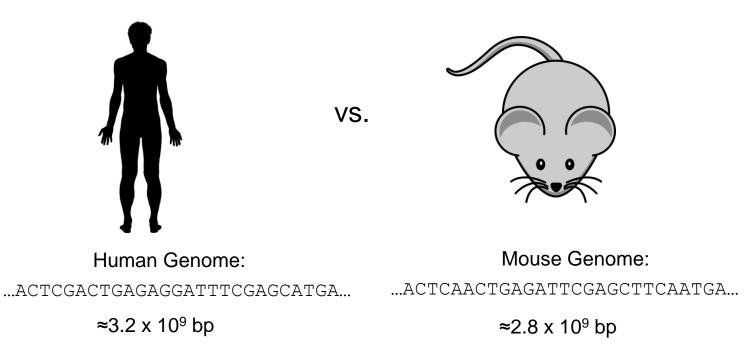
Input: A DNA string $D = d_1 d_2 d_3 \dots d_n$

Output: The corresponding RNA sequence $R = r_1 r_2 r_3 ... r_n$ where r_i corresponds to the base d_i after transcription.

Input: Two DNA strings D₁ and D₂ **Output:** True if D₁ appears somewhere in D₂

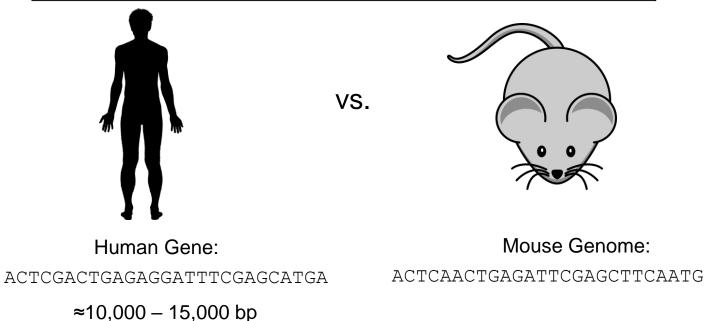
Topic: Pattern Matching

Input: String S and a Pattern P **Output**: Find the location of anywhere that P appears exactly in S

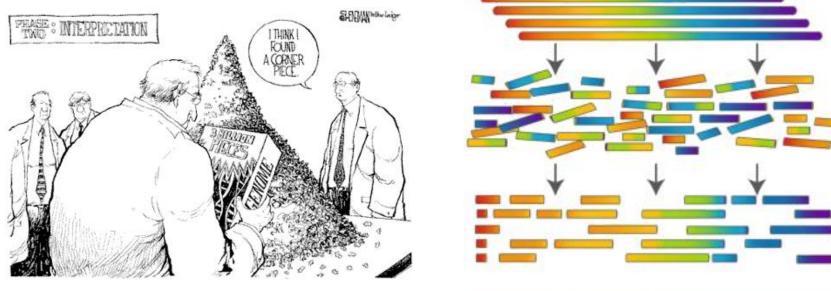


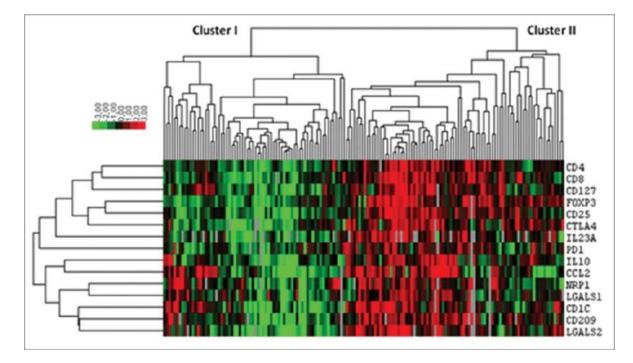
Key Question: How do we do this quickly?

LOTS of biologically motivated applications! (e.g. finding start and stop codons)

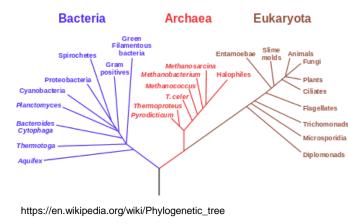

Topic: Sequence Alignment

Question: How do we compare two genomes?

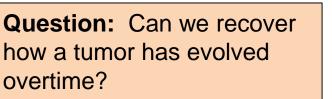

Topic: Sequence Alignment

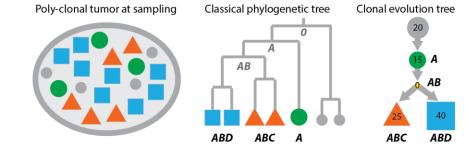

Topic 3: Genome Assembly

Question: Given a bunch of sequences from a genome, how do we reconstruct the original genome? (This is necessary because of how DNA sequencing works.)

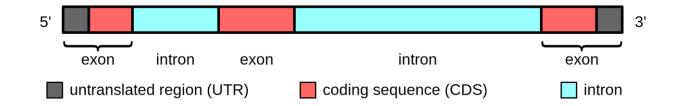

ATGTTCCGATTAGGAAACCTATCTDTAACTGTTTCATTCAGTAAAAGGAGGAAATATAA

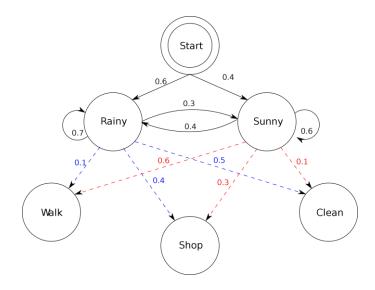
Topic: Clustering


Question: Given a dataset, can you break it into sub groups where items in a group are similar to each other, but different from items in other groups?


Topic: Phylogenetics

Phylogenetic Tree of Life


Question: How can we reconstruct the evolutionary history of different species?



https://scientificbsides.wordpress.com/2014/06/09/inferring-tumour-evolution-2-comparison-to-classical-phylogenetics/

Topic: Gene Finding and HMMs

Question: Not all DNA "codes" for proteins (is a gene). How do you find the portion of DNA that is a gene?

Course Logistics