
COMP 355
Advanced Algorithms

COMP 355: Advanced Algorithms 1

Introduction &
Course Overview



What is an algorithm?

• An algorithm is any well-defined computational procedure 
that takes some values as input and produces some values 
as output.

• Provides a step-by-step method for solving a computational 
problem

• Unlike programs, algorithms are not dependent on a 
particular programming language, machine, system, or 
compiler.

• Mathematical entities, which can be thought of as running 
on some sort of idealized computer with an infinite random 
access memory and an unlimited word size

• Algorithm design is all about the mathematical theory 
behind the design of good programs.

COMP 355: Advanced Algorithms 2



Why study algorithm design?

COMP 355: Advanced Algorithms 3

• Internet. Web search, packet routing, distributed file sharing,…

• Biology. Human genome project, protein folding,…

• Computers. Circuit layout, databases, caching, networking, 
compilers,…

• Computer graphics. Movies, video games, virtual reality,..

• Security. Cell phones, e-commerce, voting machines,…

• Multimedia. MP3, JPG, DivX, HDTV, face recognition, …

• Social Networks. Recommendations, news feeds, 
advertisements,…

• Physics. N-body simulation, particle collision simulation,…



Why study algorithm design?

• Programming is a very complex task for 
many reasons.

– Large programming projects are structurally 
complex (software engineering)

– Need to store and access large data sets 
efficiently (data structures and databases)

– Complex computational problems

• Numerical data (numerical analysis course)

• Discrete data (this course)

COMP 355: Advanced Algorithms 4



• Algorithms represent only a small fraction of the 
code generated in a large software system

• Very important to the overall success

• Bad idea! – design an inefficient algorithm and data 
structure to solve the problem and then fine-tune its 
performance

• Good idea! – design a correct and efficient 
algorithm to solve a problem

COMP 355: Advanced Algorithms 5

Why study algorithm design?



Course Overview

COMP 355: Advanced Algorithms 6

• Website:
http://cs.rhodes.edu/welshc/CS355/F19/

look here first for
– News, hints, and helpful resources

– Revisions, solutions, and corrections to problem sets

• Office Hours: Tues/Thurs 10-11:30am

• Grading
Problem sets (worth 50%)

Midterm Exam 1 (worth 15%)

Midterm Exam 2 (worth 15%)

Final Exam (worth 20%)

• Problem Sets
– Roughly one a week

– Most will include a short program to write

– Programs will be written in Python



Course Overview

COMP 355: Advanced Algorithms 7

• Review of preliminary material
– Asymptotics
– Summations
– Recurrences
– Sorting

• Designing Optimization Algorithms
– Dynamic Programming
– Greedy Algorithms

• Graph Algorithms
– Review BFS and DFS (connectivity in graphs)
– Minimum Spanning Trees
– Shortest Paths
– Network Flows

• Intractable Problems



Course Topics

COMP 355: Advanced Algorithms 8

• Algorithm Analysis (Review)

• Recurrences and Master Theorem

• Greedy Algorithms
– Interval Scheduling, Scheduling to minimize lateness, greedy graph 

algorithms

• Dynamic Programming
– Weighted Interval Scheduling, Subset Sums, Knapsack, shortest path in 

a graph

• Network Flow
– Network flows, bipartite matching, edge-disjoint paths

• NP & Computational Intractability
– Polynomial-time reductions, definition of NP, NP-complete problems

• Approximation Algorithms
– Greedy algorithms and bounds on the optimum, examples 

of approximation algorithms



Issues in Algorithm Design

• Mathematical objects (not as concrete as a 
computer program implemented in a particular 
language and executing on some machine)

• Must reason algorithmic properties 
mathematically

• Two fundamental issues to be considered:

– Correctness

– Efficiency

COMP 355: Advanced Algorithms 9



Correctness of an Algorithm

• Complex algorithms
– Require careful mathematical proofs

– May require proof of many lemmas and 
properties in the solution

• Simple algorithms
– Short intuitive explanations based on algorithm’s 

basic invariants are sufficient

– Example: BubbleSort
• The principle invariant is that on completion of the ith

iteration, the last i elements are in their proper sorted 
positions.)

COMP 355: Advanced Algorithms 10



Efficiency of an Algorithm

• Establishing efficiency is more complex than 
establishing correctness

• Function of the amount of computational 
resources an algorithm uses

– Execution time

– Amount of space (memory)

• Consider efficiency in terms of input size

• We will usually focus on worst-case analysis in this 
course.

COMP 355: Advanced Algorithms 11



Presenting Algorithms
1. Present a clear, simple and unambiguous description of the 

algorithm (pseudo-code)

– Keep it simple

– Example: Say “Add X to the end of list L” rather than present 
code to do this or use some arcane syntax, such as 
“L:insertAtEnd(X).”

2. Present a justification or proof of the algorithm’s correctness

– A good proof provides an overview of what the algorithm 
does, and then focuses on any tricky elements that may not 
be obvious.

3. Present a worst-case analysis of the algorithms efficiency 

– Typically running-time, but also can include space if space is 
an issue.

COMP 355: Advanced Algorithms 12



Next Time

• Stable Matching Algorithm

• Read Section 1.1 in KT (your book)

COMP 355: Advanced Algorithms 13


