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Selection Algorithm

Selection by the Sieve Technique
Select(array A, int p, int r, int k) { // return kth smallest of Alp..r]

if (p == r) return Alp] // only 1 item left, return it
else {
x = ChoosePivot(A, p, T) // choose the pivot element
q = Partition(A, p, r, x) f/f <Alp..qg-11, =, Alg+l..r]>
¥xRank = q - p + 1 // rank of the pivot
if (k == xRank) return x // the pivot is the kth smallest

else if (k < xRank)
return Select(A, p, g-1, k) // select from left
else
return Select(A, q+l1, r, k-xRank)// select from right




Selection Algorithm

Lemma: The element x is of rank at least n/4 and at most 3n/4 in A.
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Get median of medians
(Sorting of group medians is not really performed )




1 ifn=1,

T(n) < { T(n/5) +T(3n/4) +n otherwise.

Theorem: There is a constant ¢, such that T'(n) < en.
Proof: (by strong induction on n)
Basis: (n = 1) In this case we have T'(n) =1, and so T'(n) < en as long as ¢ = 1.

Step: We assume that T'(n') < en’ for all n’ < n. We will then show that T'(n) < cn.
By definition we have

T(n)=T(n/5)+T(3n/4) + n.

Sinee 1/5 and 3n/4 are both less than n, we can apply the induction hypothesis,
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This last expression will be < en, provided that we select ¢ such that ¢ > (19¢/20)+1.
Solving for ¢ we see that this is true provided that ¢ = 20.

Combining the constraints that ¢ = 1, and ¢ = 20, we see that by letting ¢ = 20, we are
done.



