
COMP 355
Advanced Algorithms

Dynamic Programming:
Knapsack & LCS
Section 6.4 (KT)

1

Knapsack Problem

There are two versions of the problem:

(1) “0-1 knapsack problem” and

(2) “Fractional knapsack problem”

(1) Items are indivisible; you either take an item

or not. Solved with dynamic programming

(2) Items are divisible: you can take any fraction

of an item. Solved with a greedy algorithm.

2

Knapsack Problem

Knapsack problem.
• Given 𝑛 objects and a "knapsack."
• Item 𝑖 weighs wi > 0 kilograms and has value vi > 0.
• Knapsack has capacity of 𝑊 kilograms.
• Goal: fill knapsack so as to maximize

total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35  greedy not optimal.

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

3

Input: n, w1,…,wN, v1,…,vN

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 1 to W

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Knapsack Problem: Bottom-Up
Knapsack. Fill up an n-by-W array.

6

Knapsack Algorithm

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT: { 4, 3 }
value = 22 + 18 = 40

Knapsack Problem: Running Time

Running time. (n W).

• Not polynomial in input size!

• "Pseudo-polynomial."

• Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm. There exists a polynomial
algorithm that produces a feasible solution that has value within
0.01% of optimum.

8

Using DP to compare strings

• Determining the degree of similarity between
two strings

– Applications in computational biology (sequence
alignment)

– Applications in document processing and retrieval

• One common measure of similarity between
two strings is the lengths of their longest
common subsequence.

9

Longest Common Subsequence (LCS)

LCS Problem: Given two sequences X = <x1, . . . , xm> and
Y = <y1, . . . , yn> determine the length of their longest common
subsequence, and more generally the sequence itself.

Given two sequences X = <x1, x2, . . . , xm> and Z = <z1, z2, . . . , zk>, we
say that Z is a subsequence of X if there is a strictly increasing
sequence of k indices <i1, i2, . . . , ik> (1 ≤ i1 < i2 <. . . < ik ≤ n) such that
Z = <xi1 , xi2 , . . . , xik >.
For example, let X = <ABRACADABRA> and let Z = <AADAA>, then Z
is a subsequence of X.

10

