
COMP 355
Advanced Algorithms

Dynamic Programming:
Knapsack & LCS
Section 6.4 (KT)
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Knapsack Problem

There are two versions of the problem:

(1) “0-1 knapsack problem” and

(2) “Fractional knapsack problem”

(1) Items are indivisible; you either take an item

or not. Solved with dynamic programming

(2) Items are divisible: you can take any fraction 

of an item. Solved with a greedy algorithm.
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Knapsack Problem

Knapsack problem.
• Given 𝑛 objects and a "knapsack."
• Item 𝑖 weighs wi > 0 kilograms and has value vi > 0.
• Knapsack has capacity of 𝑊 kilograms.
• Goal:  fill knapsack so as to maximize 

total value.

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.
Ex:  { 5, 2, 1 } achieves only value = 35   greedy not optimal.
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Input: n, w1,…,wN, v1,…,vN

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 1 to W

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Knapsack Problem:  Bottom-Up
Knapsack.  Fill up an n-by-W array.
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Knapsack Algorithm
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OPT:  { 4, 3 }
value = 22 + 18 = 40



Knapsack Problem:  Running Time

Running time.  (n W).

• Not polynomial in input size!

• "Pseudo-polynomial."

• Decision version of Knapsack is NP-complete.  

Knapsack approximation algorithm.  There exists a polynomial 
algorithm that produces a feasible solution that has value within 
0.01% of optimum.  
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Using DP to compare strings

• Determining the degree of similarity between 
two strings

– Applications in computational biology (sequence 
alignment)

– Applications in document processing and retrieval

• One common measure of similarity between 
two strings is the lengths of their longest 
common subsequence.
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Longest Common Subsequence (LCS)

LCS Problem: Given two sequences X = <x1, . . . , xm> and 
Y = <y1, . . . , yn> determine the length of their longest common 
subsequence, and more generally the sequence itself.

Given two sequences X = <x1, x2, . . . , xm> and Z = <z1, z2, . . . , zk>, we 
say that Z is a subsequence of X if there is a strictly increasing 
sequence of k indices <i1, i2, . . . , ik> (1 ≤ i1 < i2 <. . . < ik ≤ n) such that 
Z = <xi1 , xi2 , . . . , xik >. 
For example, let X = <ABRACADABRA> and let Z = <AADAA>, then Z 
is a subsequence of X.
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