COMP 355
Advanced Algorithms

Dynamic Programming:
Knapsack & LCS
Section 6.4 (KT)

G

Rhodes College

1848 —

Knapsack Problem

There are two versions of the problem:
(1) “0-1 knapsack problem™ and
(2) “Fractional knapsack problem™

(1) Items are indivisible; you either take an item
or not. Solved with dynamic programming

(2) Items are divisible: you can take any fraction
of an item. Solved with a greedy algorithm.

Knapsack Problem

Knapsack problem.
* Given n objects and a "knapsack."
* Item i weighs w, >0 kilograms and has value v, > 0.

* Knapsack has capacity of W kilograms. --
ltem | Value | Weight
1 1 1

Goal: fill knapsack so as to maximize

total value.
W= 11 2 6 2
Ex: {3, 4} has value 40. > 18 °
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v, / w..
Ex: {5, 2,1 }achieves only value =35 = greedy not optimal

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.
Input: n, Wy ey Wy V., Vy

for w=0 to W
M[O, w] = 0

for 1 =1 ton
for w=1l to W
if (w, > w)
M[i, w] = M[i-1, w]
else
M[i, w]

max {M[i-1, w], v, + M[i-1, w-w;]}

return M[n, W]

Knapsack Algorithm

W+1 >

o123 lels 6] 7]8]9]w0li
0 0 0 0 0 0 0 0 0 0 0

) 0

{1} o 1 1 1 1 1 1 1 1 1 1 1

{1,2} 0 1 6 7 7 7 7 7 7 7 7 7

{1,2,3} o 1 6 7 7 18 19 24 25 25 25 25
{1,2,3,4} 0 1 6 7 7 18 22 24 28 29 29 -
{1,2,3,4,5} 0 1 6 7 7 18 22 28 29 34 34 -

OPT: {4,3} ; ; ;

value =22 +18 =40 W= 11 ; " X

4 22 6

5 28 7

Knapsack Problem: Running Time

Running time. ®(n W).

* Not polynomial in input size!

* "Pseudo-polynomial.”

e Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm. There exists a polynomial
algorithm that produces a feasible solution that has value within

0.01% of optimum.

Using DP to compare strings

* Determining the degree of similarity between
two strings

— Applications in computational biology (sequence
alignment)

— Applications in document processing and retrieval

* One common measure of similarity between
two strings is the lengths of their longest
common subsequence.

Longest Common Subsequence (LCS)

Given two sequences X =<X;, X,, ..., X >and Z=<z,,2,,..., 2>, we
say that Z is a subsequence of X if there is a strictly increasing
sequence of k indices <i, i,, ..., i,>(1<i;<i,<...<i <n)such that
L=<Xig, Xigy oo vy X >

For example, let X = <ABRACADABRA> and let Z = <AADAA>, then Z
is a subsequence of X.

XN=]A AlCIA B|R

\\ \ /// /'

Y = BB D B{A|ID|O|O

LCS Problem: Given two sequences X =<x,, ..., X,> and
Y=<y, ...,Y,>determine the length of their longest common
subsequence, and more generally the sequence itself.

