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Augmenting Path Algorithm

Augment (£, c, P) {
b <« bottleneck (P)
foreach e € P {
if (e € E) f(e) « f(e) + b forward edge
else f(e®) « f(e) - b reverse edge

}

return £

Ford-Fulkerson (G, s, t, c) {
foreach e e E f(e) « O
G; < residual graph

while (there exists augmenting path P) ({
f « Augment(f, c, P)
update G

}

return £



Remalining Issues

How efficiently can we perform augmentation?

How many augmentations might be required until
converging?

If no more augmentations can be performed,
have we found the max-flow?



Def. An s-t cut is a partition (4,B) of V withs €e Aandt € B.

Def. The capacity of a cut (4,B) is: Cap(A,B) = 2 c(e)
e out of A
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Def. An s-t cut is a partition (4,B) of V withs € Aandt € B.

Def. The capacity of a cut (4, B) is: Cap(A, B) = 2. c(e)
e out of A




Min s-t cut problem. Find an s-t cut of minimum capacity.




Flows and Cuts

Flow value lemma. Let f be any flow, and let (4, B) be any s-t
cut. Then, the net flow sent across the cut is equal to the

amount leaving s. > fle) — 2 f(e) = v(f)

e out of 4 einto A
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (4, B) be any s-t
cut. Then, the net flow sent across the cut is equal to the

amount leaving s. Zf(e) — Zf(e) = V(f)

e out of 4 einto A
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (4, B) be any s-t
cut. Then, the net flow sent across the cut is equal to the

amount leaving s. X fle) — X2 f(e) = v(f)
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Flows and Cuts

Weak duality. Let f be any flow, and let (4, B) be any
s-t cut. Then the value of the flow is at most the
capacity of the cut.

Cut capacity=30 = Flow value <30
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Certificate of Optimality

Max-Flow/Min-Cut Theorem.
Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity =28 = Flow value <28
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Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the
following are equivalent.

(i) There exists a cut (4, B) such that v(f)
(ii) Flow f is a max flow.

cap(A, B).

(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

 Letfbe aflow. If there exists an augmenting path, then we can improve f by
sending flow along path.



Proof of Max-Flow Min-Cut Theorem

(iii) = (i)

* Let f be a flow with no augmenting paths.

* Let A be set of vertices reachable from s in residual graph.
* By definition of 4,s € A.

* By definition of f,t ¢ A.

W) = 2 fle)= 2 f(e)

e out of 4 einto A

= xcle)

e out of 4

= cap(4,B)

original network



Analysis of Ford-Fulkerson

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity ¢, (e)
remains an integer throughout the algorithm.

Lemma. Given an s-t network with integer capacities, the Ford-

Fulkerson algorithm terminates. Furthermore, it produces an integer-
valued flow function.



Bad Example for Ford-Fulkerson
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If we let |f| denote the final maximum flow value, the number
of augmentation steps can be as high as |f].

18



Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

 Some choices lead to exponential algorithms.

* Clever choices lead to polynomial algorithms.

e If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
* Can find augmenting paths efficiently.
* Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 Max bottleneck capacity.

» Sufficiently large bottleneck capacity.

* Fewest number of edges.
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Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity
increases flow by max possible amount.

The sum of capacities of the edges leavings is ¢= Y ¢(s.v)
ERDS o

Define A to be the largest power of 2, such that A<C

Let G;(A) be the subgraph of the residual graph consisting of
only arcs with capacity at least A.




Capacity Scaling

Scaling-Max-Flow (G, s, t, c) {
foreach e e E f(e) « 0
A < smallest power of 2 greater than or equal to C

G; < residual graph

while (A =2 1) {
G (A) « A-residual graph
while (there exists augmenting path P in G:(A)) {
f < augment(f, c, P)
update G, (A)
}
A« A/ 2

}

return £



Edmonds-Karp Algorithm

Neither of the algorithms we have seen so far runs in
“truly” polynomial time

Edmonds and Karp developed the first polynomial-time
algorithm for flow networks.

— Uses Ford-Fulkerson as basis

— Modification: when finding the augmenting path, we
compute the s-t path in the residual network having the
smallest number of edges

* Note that this can be accomplished by using BFS to compute the
augmenting path

— |t can be shown that the total number of augmenting steps
using this method is O(nm) (Proof in CLRS)

— Overall runtime = O(nm?)



Other Algorithms

e KT discusses pre-flow push algorithm
— Number of variants of this algorithm
— Simplest version runs in O(n3) time

* Another quite sophisticated algorithm runs in time
O(min(n%3,mY2)m log n log U), where U is an upper bound on
the largest capacity.



