
COMP 355
Advanced Algorithms

More on Network Flows
Section 7.1-7.3, 7.5-7.6 (KT)

1

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19Cut capacity = 19

2

Augmenting Path Algorithm
Augment(f, c, P) {

b  bottleneck(P)

foreach e  P {

if (e  E) f(e)  f(e) + b

else f(eR)  f(e) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e  E f(e)  0

Gf  residual graph

while (there exists augmenting path P) {

f  Augment(f, c, P)

update Gf
}

return f

}

forward edge

reverse edge

3

Remaining Issues

4

• How efficiently can we perform augmentation?

• How many augmentations might be required until
converging?

• If no more augmentations can be performed,
have we found the max-flow?

Def. An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠  𝐴 and 𝑡  𝐵.

Def. The capacity of a cut (𝐴, 𝐵) is:

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 10 + 5 + 15
= 30

A



cap(A, B) = c(e)
e out of A



5

Def. An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠  𝐴 and 𝑡  𝐵.

Def. The capacity of a cut (𝐴, 𝐵) is:

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Cuts

Capacity = 9 + 15 + 8 + 30
= 62

s



cap(A, B) = c(e)
e out of A



Min 𝑠-𝑡 cut problem. Find an 𝑠-𝑡 cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Capacity = 10 + 8 + 10
= 28

7

Flow value lemma. Let 𝑓 be any flow, and let (𝐴, 𝐵) be any 𝑠-𝑡
cut. Then, the net flow sent across the cut is equal to the
amount leaving 𝑠.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24



f (e)
e out of A

 − f (e)
e in to A

 = v(f)

4

A

8

Flow value lemma. Let 𝑓 be any flow, and let (𝐴, 𝐵) be any 𝑠-𝑡
cut. Then, the net flow sent across the cut is equal to the
amount leaving 𝑠.

Flows and Cuts

10

6

6

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0



f (e)
e out of A

 − f (e)
e in to A

 = v(f)

Value = 6 + 0 + 8 - 1 + 11
= 24

4

11

A

9

Flow value lemma. Let 𝑓 be any flow, and let (𝐴, 𝐵) be any 𝑠-𝑡
cut. Then, the net flow sent across the cut is equal to the
amount leaving 𝑠.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0



f (e)
e out of A

 − f (e)
e in to A

 = v(f)

Value = 10 - 4 + 8 - 0 + 10
= 24

4

A

10

Flows and Cuts

Weak duality. Let 𝑓 be any flow, and let (𝐴, 𝐵) be any
𝑠-𝑡 cut. Then the value of the flow is at most the
capacity of the cut.

Cut capacity = 30  Flow value  30

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

A

12

Certificate of Optimality
Max-Flow/Min-Cut Theorem.
Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28

Cut capacity = 28  Flow value  28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0A

14

Max-Flow Min-Cut Theorem
Augmenting path theorem. Flow 𝑓 is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the
following are equivalent.

(i) There exists a cut (𝐴, 𝐵) such that 𝑣(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵).

(ii) Flow 𝑓 is a max flow.

(iii) There is no augmenting path relative to 𝑓.

(i)  (ii) This was the corollary to weak duality lemma.

(ii)  (iii) We show contrapositive.

• Let f be a flow. If there exists an augmenting path, then we can improve f by
sending flow along path. 15

Proof of Max-Flow Min-Cut Theorem
(iii)  (i)

• Let 𝑓 be a flow with no augmenting paths.

• Let 𝐴 be set of vertices reachable from s in residual graph.

• By definition of 𝐴, 𝑠  𝐴.

• By definition of 𝑓, 𝑡  𝐴.



v(f) = f (e)
e out of A

 − f (e)
e in to A



= c(e)
e out of A



= cap(A,B)
original network

s

t

A B

16

Analysis of Ford-Fulkerson
Assumption. All capacities are integers between 1 and 𝐶.

Invariant. Every flow value 𝑓(𝑒) and every residual capacity 𝑐𝑓 (𝑒)
remains an integer throughout the algorithm.

Lemma. Given an 𝑠-𝑡 network with integer capacities, the Ford-
Fulkerson algorithm terminates. Furthermore, it produces an integer-
valued flow function.

17

Bad Example for Ford-Fulkerson

18

If we let |f| denote the final maximum flow value, the number
of augmentation steps can be as high as |f|.

Choosing Good Augmenting Paths
Use care when selecting augmenting paths.
• Some choices lead to exponential algorithms.
• Clever choices lead to polynomial algorithms.
• If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
• Can find augmenting paths efficiently.
• Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
• Max bottleneck capacity.
• Sufficiently large bottleneck capacity.
• Fewest number of edges.

20

Capacity Scaling
Intuition. Choosing path with highest bottleneck capacity
increases flow by max possible amount.

• The sum of capacities of the edges leaving s is

• Define  to be the largest power of 2, such that  ≤ C

• Let Gf () be the subgraph of the residual graph consisting of
only arcs with capacity at least .

110

s

4

2

t
1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)
21

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {

foreach e  E f(e)  0

  smallest power of 2 greater than or equal to C

Gf  residual graph

while (  1) {

Gf()  -residual graph

while (there exists augmenting path P in Gf()) {

f  augment(f, c, P)

update Gf()

}

   / 2

}

return f

}

22

Edmonds-Karp Algorithm

• Neither of the algorithms we have seen so far runs in
“truly” polynomial time

• Edmonds and Karp developed the first polynomial-time
algorithm for flow networks.
– Uses Ford-Fulkerson as basis
– Modification: when finding the augmenting path, we

compute the s-t path in the residual network having the
smallest number of edges
• Note that this can be accomplished by using BFS to compute the

augmenting path

– It can be shown that the total number of augmenting steps
using this method is O(nm) (Proof in CLRS)

– Overall runtime = O(nm2)

26

Other Algorithms

• KT discusses pre-flow push algorithm

– Number of variants of this algorithm

– Simplest version runs in O(n3) time

• Another quite sophisticated algorithm runs in time
O(min(n2/3,m1/2)m log n log U), where U is an upper bound on
the largest capacity.

27

