
COMP 355
Advanced Algorithms

More on Network Flows
Section 7.1-7.3, 7.5-7.6 (KT)
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Ford-Fulkerson Algorithm
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Augmenting Path Algorithm
Augment(f, c, P) {

b  bottleneck(P) 

foreach e  P {

if (e  E) f(e)  f(e) + b

else f(eR)  f(e) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e  E  f(e)  0

Gf  residual graph

while (there exists augmenting path P) {

f  Augment(f, c, P)

update Gf
}

return f

}

forward edge

reverse edge
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Remaining Issues
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• How efficiently can we perform augmentation?

• How many augmentations might be required until 
converging?

• If no more augmentations can be performed, 
have we found the max-flow?



Def.  An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠  𝐴 and 𝑡  𝐵.

Def. The capacity of a cut (𝐴, 𝐵) is:
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Def.  An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠  𝐴 and 𝑡  𝐵.

Def. The capacity of a cut (𝐴, 𝐵) is:
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Min 𝑠-𝑡 cut problem.  Find an 𝑠-𝑡 cut of minimum capacity.

Minimum Cut Problem
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Flow value lemma.  Let 𝑓 be any flow, and let (𝐴, 𝐵) be any 𝑠-𝑡
cut.  Then, the net flow sent across the cut is equal to the 
amount leaving 𝑠.

Flows and Cuts
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Flow value lemma.  Let 𝑓 be any flow, and let (𝐴, 𝐵) be any 𝑠-𝑡
cut.  Then, the net flow sent across the cut is equal to the 
amount leaving 𝑠.

Flows and Cuts
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Flow value lemma.  Let 𝑓 be any flow, and let (𝐴, 𝐵) be any 𝑠-𝑡
cut.  Then, the net flow sent across the cut is equal to the 
amount leaving 𝑠.

Flows and Cuts
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Flows and Cuts

Weak duality.  Let 𝑓 be any flow, and let (𝐴, 𝐵) be any 
𝑠-𝑡 cut.  Then the value of the flow is at most the 
capacity of the cut.

Cut capacity = 30    Flow value  30 

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

A

12



Certificate of Optimality
Max-Flow/Min-Cut Theorem. 
Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28

Cut capacity  = 28    Flow value  28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0A

14



Max-Flow Min-Cut Theorem
Augmenting path theorem.  Flow 𝑓 is a max flow iff there are no 
augmenting paths. 

Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the 
max flow is equal to the value of the min cut.

Proof strategy.  We prove both simultaneously by showing the 
following are equivalent.

(i)  There exists a cut (𝐴, 𝐵) such that 𝑣(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵).

(ii)  Flow 𝑓 is a max flow.

(iii)  There is no augmenting path relative to 𝑓.

(i)   (ii)  This was the corollary to weak duality lemma.

(ii)   (iii)  We show contrapositive.

• Let f be a flow. If there exists an augmenting path, then we can improve f by 
sending flow along path. 15



Proof of Max-Flow Min-Cut Theorem
(iii)   (i)

• Let 𝑓 be a flow with no augmenting paths.

• Let 𝐴 be set of vertices reachable from s in residual graph.

• By definition of 𝐴, 𝑠  𝐴.

• By definition of 𝑓, 𝑡  𝐴.

 

v( f ) = f (e)
e out of A

 − f (e)
e in to A



= c(e)
e out of A



= cap(A,B)
original network
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Analysis of Ford-Fulkerson
Assumption.  All capacities are integers between 1 and 𝐶.

Invariant.  Every flow value 𝑓(𝑒) and every residual capacity 𝑐𝑓 (𝑒)
remains an integer throughout the algorithm.

Lemma. Given an 𝑠-𝑡 network with integer capacities, the Ford-
Fulkerson algorithm terminates. Furthermore, it produces an integer-
valued flow function.
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Bad Example for Ford-Fulkerson
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If we let |f| denote the final maximum flow value, the number 
of augmentation steps can be as high as |f|.



Choosing Good Augmenting Paths
Use care when selecting augmenting paths.
• Some choices lead to exponential algorithms.
• Clever choices lead to polynomial algorithms.
• If capacities are irrational, algorithm not guaranteed to terminate!

Goal:  choose augmenting paths so that:
• Can find augmenting paths efficiently.
• Few iterations.

Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970]
• Max bottleneck capacity.
• Sufficiently large bottleneck capacity.
• Fewest number of edges.
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Capacity Scaling
Intuition.  Choosing path with highest bottleneck capacity 
increases flow by max possible amount.

• The sum of capacities of the edges leaving s is

• Define  to be the largest power of 2, such that  ≤ C

• Let Gf () be the subgraph of the residual graph consisting of 
only arcs with capacity at least .
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Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {

foreach e  E  f(e)  0

  smallest power of 2 greater than or equal to C

Gf  residual graph

while (  1) {

Gf()  -residual graph

while (there exists augmenting path P in Gf()) {

f  augment(f, c, P)

update Gf()

}

   / 2

}

return f

}
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Edmonds-Karp Algorithm

• Neither of the algorithms we have seen so far runs in 
“truly” polynomial time 

• Edmonds and Karp developed the first polynomial-time 
algorithm for flow networks.
– Uses Ford-Fulkerson as basis
– Modification: when finding the augmenting path, we 

compute the s-t path in the residual network having the 
smallest number of edges
• Note that this can be accomplished by using BFS to compute the 

augmenting path

– It can be shown that the total number of augmenting steps 
using this method is O(nm) (Proof in CLRS)

– Overall runtime = O(nm2)
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Other Algorithms

• KT discusses pre-flow push algorithm

– Number of variants of this algorithm

– Simplest version runs in O(n3) time

• Another quite sophisticated algorithm runs in time 
O(min(n2/3,m1/2)m log n log U), where U is an upper bound on 
the largest capacity.
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