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Runtimes of Various Max-Flow Algorithms

Algorithm Year | Time Notes

Ford-Fulkerson 1956 | O(mC')

Gabow 1985 | O(nmlog C') Scaling

Edmonds-Karp 1972 D[IHH ) Ford-Fulkerson + augment shortest paths

Dinic 1970 | O(n?m) Blocking flows in a layered graph

Dinic + Tarjan 1983 | O(nml ufrn} Dinic + better data structures

Preflow push 1986 | OQ(nm log( n- 'm)) | Goldberg and Tarjan

King, Rao, Tarjan | 1994 | O(mnl 0F_m_ n) | O(nm) if m = O(n'te)

Orlin + KRT 2013 | O(nm) ) Orlin: O(nm) time for m < O(nl8/15-5)
KRT: O(nm) for m > n'**

Current state of the art is O(nm)



Matching

Matching.

* |nput: undirected graph G = (V, E).

e M cEisamatching if each node appears in at most one edge in M.
 Max matching: find a max cardinality matching.




Bipartite Matching

Bipartite matching.

* |nput: undirected, bipartite graph G=(X Y, E).

e M cEisamatching if each node appears in at most one edge in M.
* Max matching: find a max cardinality matching.
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Bipartite Matching

Bipartite matching.

* |nput: undirected, bipartite graph G=(X U Y, E).

e M cEisamatching if each node appears in at most edge in M.
 Max matching: find a max cardinality matching.

max matching
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Bipartite Matching

Max flow formulation.

Create digraph G'=(X U YU {s, t}, E').

Direct all edges from X to Y, and assign unit (or infinite) capacity.
Add source s, and unit capacity edges from s to each node in X.
Add sink t, and unit capacity edges from each node in Y to t.
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Edge Disjoint Paths

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find
the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
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Edge Disjoint Paths

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find
the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.




Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.
Pf. <

— Suppose there are k edge-disjoint paths P, . . ., P,.
— Set f(e) = 1 if e participates in some path P;; else set f(e) = 0.
— Since paths are edge-disjoint, f is a flow of value k. =



Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.
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Theorem. Max number edge-disjoint s-t paths equals max flow value.
Pf. >

— Suppose max flow value is k.
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— Integrality theorem = there exists 0-1 flow f of value k.

— Consider edge (s, u) with f(s, u) = 1.
* by conservation, there exists an edge (u, v) with f(u, v) =1
e continue until reach t, always choosing a new edge

— Produces k (not necessarily simple) edge-disjoint paths. =

can eliminate cycles to get simple paths if desired



Extensions of Network Flow

Network flow - useful in a wide variety of applications

We will discuss two useful extensions to the network flow
problem.

— Both can be reduced to network flow
— Single algorithm will solve them both.

Many computational problems that would seem to have little to
do with flow of fluids through networks can be expressed as one
of these two extended versions.



Circulation with Demands

Circulation with demands.
— Directed graph G = (V, E).
— Edge capacities c(e), e € E.
— Node supply and demands d(v), v € V.
I

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) =0

Def. A circulation is a function that satisfies:

— Foreache € E: 0 < fle) £ c(e) (capacity)
— ForeachveV: Y f(e) - X f(e) = d(v) (conservation)
eintoVv e out of v

Circulation problem: Given (V, E, c, d), does there exist a circulation?
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Circulation with Demands

Necessary condition: sum of supplies = sum of demands.

yd(v) = ¥ —-d(v) = D

v:d(v)>0 v:d(v)< 0

Pf. Sum conservation constraints for every demand node v.
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Max flow formulation.

supply —» g -6 «—— supply
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Circulation with Demands

Max flow formulation.

* Add new source s and sink t.

* For each v with d(v) <0, add edge (s, v) with capacity -d(v).
* For each v with d(v) >0, add edge (v, t) with capacity d(v).
* Claim: G has circulation iff G' has max flow of value D. —

saturates all edges

leaving s and entering t

8 b supply

° \@/ - demand



Lemma: There is a feasible circulation in G if and only if G’ has an s*-t* flow of value D.

Proof: (=) Suppose that there is a feasible circulation f in G. The value of this circulation
(the net flow coming out of all supply nodes) is clearly D. We can create a flow f’ of
value D in G’, by saturating all the edges coming out of s* and all the edges coming
into t*. We claim that this is a valid flow for G’. Clearly it satisfies all the capacity
constraints. To see that it satisfies the flow balance constraints observe that for each
vertex v € V, we have one of three cases:

e (v € S) The flow into v from s* matches the supply coming out of v from the
circulation.

e (v € T) The flow out of v to t* matches the demand coming into v from the
circulation.

e (ve V\(SuUT)) We have d, = 0, which means that it satisfies flow conservation
by the supply/demand constraints.

(<) Conversely, suppose that we have a flow f’ of value D in G’. It must be that
each edge leaving s* and each edge entering t* is saturated. Therefore, by the flow
conservation of f’, all the supply nodes and all the demand nodes have achieved their
desired supply/demand constraints. All the other nodes satisfy their supply/demand
constraints because by the flow conservation of f” the incoming flow equals the outgoing
flow. Therefore, the resulting flow is a circulation for G.

It is not hard to see to that the reduction can be performed in O(n + m) time by a simple
analysis of the network’s structure. Thus, the overall running time is dominated by the time
to compute the network flow (which is O(nm) according to the current state-of-art).



Circulation with Demands and Lower
Bounds

Feasible circulation.
— Directed graph G = (V, E).
— Edge capacities c(e) and lower bounds 7 (e), e € E.
— Node supply and demands d(v), v € V.

Def. A circulation is a function that satisfies:

— Foreache € E: /(e) < fle) £ c(e) (capacity)
— ForeachveV: X2Xf(e)- Xf(e) = d(v) (conservation)
eintov e out of v

Circulation problem with lower bounds. Given (V, E, /7, c, d), does
there exists a circulation?

Initial network A valid flow 17
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Circulation with Demands and Lower
Bounds

ldea. Model lower bounds with demands.

* Send /(e) units of flow along edge e.
 Update demands of both endpoints.

capacity

| ] !
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d(v) d(w) d(v) + 2 d(w) -2
G G'

lower bound upper bound

Theorem. There exists a circulation in G iff there exists a
circulation in G'. If all demands, capacities, and lower bounds in
G are integers, then there is a circulation in G that is integer-
valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - /(e) is a
circulation in G'.



Bounds

G
1/3

Initial network Modified Valid circulation Final circulation
(edges labeled with (with no lower fi (for original network)

[£, ¢] bounds) capacity bounds)
(a) (b) (c) (d)
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Survey Design

Survey design.

* Design survey asking n, consumers about n, products.
e Can only survey consumer i about a product j if they own it.
* Ask consumer i between c, and c;' questions.

* Ask between p; and p;,' consumers about product j.

Goal. Design a survey that meets these specs, if possible.



Survey Design

Formulate as a circulation problem with lower bounds.
* Include an edge (i, j) if customer i owns product j.
* Integer circulation <> feasible survey design.

[0, o]

consumers 5 (5 products



Lemma: There exists a valid circulation in & if and only there is a valid survey design.

Proof: (=) Suppose that G has a valid (integer-valued) ecirculation. For each customer-
product edge (i, j) that carries one unit of flow, customer 7 is surveyed about product j.
By definition of the edges, customers are surveyed only about products they purchased.
From our capacity constraints and the fact that demands are all zero, it follows that the
total flow into each customer node is between ¢; and ¢, implying that this customer is
asked about this many products. Similarly, the total flow out of each product node is
between p; and pjﬁ implying that this product is involved in this many products surveys

(«=) Suppose that there is a valid survey design. We construct a flow in & as follows.
For each customer-product pair (i, j) involved in the survey, we create a flow of one
unit on edge (i,7). We set the flow along the edge (s,i) to the number of surveys
that customer i answers, we set the flow along the edge (j,t) to the number of surveys
involving product j, and we set the flow on edge (7, s) to the total number of surveys. It
is straightforward to see that (by the rules of a valid survey design) this is a valid flow in
(, and in particular, it satisfies the lower and upper capacity constraints and the supply
and demand constraints.
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